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Aka'aa--Solutions for the slow flow past a square and a hexagonal array of cylinders are determined using 
a somewhat non-conventional numerical method. The calculated values of the drag on a cylinder as a 
function of c, the volume fraction of the cylinders, are shown to be in excellent agreement with the 
corresponding asymptotic expressions for c ~ i and for c--, cm~, the maximum volume fraction. These 
solutions are then used to calculate the average temperature difference between the bulk and the cylinders 
which are heated uniformly under conditions of small Reynolds and P~clet numbers. 

!. INTRODUCTION 

The study of the flow past an array of circular cylinders continues to attract interest because of 
the importance of this configuration in the design of many heat and mass tramffer equipments. 
Different numerical techniques for solving the governing equations have appeared in the 
literature and these have been summarized by Launder & Massey (1978). One of the major 
difficulties in obtaining a numerical solution via finite differences arises from the curved 
boundaries of the domain in which the governing equations are to be solved. Launder & 
Massey (1978) develeped a numerical scheme which uses a polar grid in the vicinity of the 
cylinder and a Cartesian mesh in the remainder of the flow domain, and then solved the 
Navier-Stokes equations for a few specific geometries. Surprisingly though, exact results for 
the drag on a cylinder in a periodic array as a function of c, the volume fraction of the solids, 
are still not available in the literature even for the simpler case of creeping flow. 

In the first part of the present paper we present a numerical technique which is particularly 
suitable for solving the creeping flow equations and which we shall employ to calculate the drag 
on a cylinder as a function of c for the case of the two periodic arrays, the square array and the 
hexagonal array. For very dilute (c ,~ 1) and for very Concentrated (c"Cm,x) arrays, these 
numerical ~results for the drag, which are believed to be new, are shown to be in excellent 
agreement with the corresponding analytical expressions. 

In the second part of the paper we consider the problem of heat transfer to the moving fluid 
from uniformly heated cylinders held fixed in a square array under conditions of small 
Reynolds and P6clet numbers. Recently, Acrivos et al. (1980) examined the corres- 
ponding case of heat transfer for heated spheres held fixed in a random array and found 
that the P~clet number plays a subtle role in such processes even when its magnitude is very 
small in that, as a consequence of the large temperature gradients that are set up inside the 
bed, the excess temperature of the particles depends on the details of the flow even to leading 
order. Since this result carries over to the present problem, the solutions obtained in the first 
part will be used to calculate this excess temperature for the periodic square array as a function 
of c. Again, for the dilute arrays, the numerical results thus arrived at are in excellent 
agreement with the corresponding analytical expressions for small c. 

2. FLOW PAST A SQUARE ARRAY OF CYLINDERS 
2.1 The formulation of the problem 

Consider the steady motion of an incompressible viscous fluid through a periodic square 
array of cylinders each of radius al, with 21 being the center-to-center distance distance 
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between two adjacent cylinders. The mean flow velocity of magnitude U is in the xl-direction. 
We render all variables dimensionless using l as the characteristic length scale and U as the 
characteristic velocity and assume that the Reynolds number of the flow is very small. 

Consequently, the equations of motion reduce to the creeping flow equations 

V2~ = to, [1] 

V2~o = 0, [2] 

where ~b and to are, respectively, the stream function and the vorticity. In view of the symmetry 
of the flow, the boundary conditions are (see figure I) 

= to = 0 on BC, [3] 

0~/t = 0_.~_~ = 0 on CD and on EF, [4] 
Oxl ax~ 

w=0,  ~b=l on DE. [5] 

In addition, because of the no-slip condition at the surface of the solids, we have that 

d~ 
= ~ r  = 0 on FB. [6] 

Note that we have one boundary condition each for ~, and to along all the boundary lines except 
along FB where both boundary conditions are specified in terms of ~b. 

When solving such problems numerically it has been customary (see Leal & Acrivos, 1969) 
to obtain a boundary condition in terms of to on r = a using a Taylor series expansion for ~b, 

which in the present case gives 

~b(a + Ar)= ~b,=, + Ar(~rr)r~ + (Ar)2[O2~b~ - - ~ - [  d-~},= ~ + 0(Ar) 3 . [7] 

Since ~ and its normal derivative vanish at r = a, and since to(a) = 2 (a ~b/ar),=~,[7] reduces 

E O 

x 2 

l 
A B C 

Figure 1. A portion of the unit cell for a square array of cylinders. 
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to 

2h(a + Ar) ..... 
w(a)-=- (Ar) 2 +o~ar). [8] 

The boundary value problem as formulated above can then be solved numerically using 
suitable iterative methods. However, since the 0(At) term in [8] is proportional to 830/0r 3 which 
is of order 1/(1- a) 3, it is clear that for values of a close to unity, a very fine grid would be 
required if [8] were used to calculate the vorticity. This difficulty renders the above procedure, 
rather cumbersome. On the other hand, the method to be described in the next section proved 
to be very efficient and gave accurate results for the complete range of a. 

2.2 The numerical method 
A general solution of [1] and [2] which satisfies the boundary conditions along BC and El: is 

given by 

N 
~o = 2(4aj r + c]a2r -I) sin0 + 8 ~  (na.r 2"-I - (n - 1 )cna 'n -2r  I-2") Sin (2n - 1)0, 

,=2 
[9] 

= (atr3+ cma2rln r+ bla2r+ dla4r -j) sin 0 

N 
+ Z { drr2"+l + Cn a4n-2r3-2n + a2(b, r2"-I + dna4n-2rl-2")} sin (2n - 1)0, 

n=2 
[1o] 

which is exact except for the fact that the infinite series has been truncated to a finite number of 
terms. The coefficients c, and d, in the above equations can be expressed in terms of a, and b, 
using the no-slip boundary conditions [6] at r-- a. Thus we obtain 

"/" (4al+2bOa2~sinO+8~ sin (2n-  1)0 
co=z~4alr- r(21n a + 1)] .-2 

{na, r 2"-I + (n - l)a4"-2r~-2"(2na, - (2n - l)b,)}. [11] 

$=[al r3{  1-21na+i[r)41nr/a\ ~+21na+21na-](a)4}+b,a2r{ 1 21nr 
21na+ l  

[12] 

We are now left with the task of choosing the coefficients a, and b, so as to satisfy the 
remaining boundary conditions in some approximate sense. This is accomplished in the 
following manner. First we select M number of points (M > N) along the lines CD and DE at 
which [11] and [12] are to meet the boundary conditions. Since to every point, there are two 
boundary conditions, we thereby obtain 2M linear algebraic equations in 2N unknowns. Since 
M > N, these 2M equations cannot, in general, be satisfied simultaneously and therefore the 
unknowns a, and b, are determined such that all the 2M equations are satisfied in the 
"least-squares" sense. The method used to accomplish this described by Forsythe et al. (1977). 
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Once the unknown coefficients in the series for ~ have been determined, it is a simple 
matter to compute the velocity at any point within the unit cell as well as the drag per unit 
length of a cylinder in the periodic array. The force F per unit length on a cylinder exerted by 
the fluid moving with mean flow velocity U is given by 

F r 2" 
~.U = a J0 (o sine-pcose) dO, [13] 

where p is the pressure and ~ is the viscosity of the fluid. Further, since the solution of the 
two-dimensional incompressible creeping flow equations can be represented by an analytic 
function w(z) of the complex variable z = xl +/x2 (see Happel & Brenner, 1965) with the real 
and the imaginary parts of w(z) being, respectively, p/g and to, the integral in [13] is related to the 
imaginary part of the contour integral of w around Iz[ = a, i.e. 

F 
/zU = Imfpzi:~ w(z)dz. [141 

From the expression for ~o (see [11]) we see that w(z) has a simple pole at z = 0 and therefore 

F 8 rraZ(2al + b0 
/zU : (2 In a + 1) [15] 

2.3 Results and discussion 
Values of the dimensionless drag F/~U for various values of c are listed in table 1 where, in 

the case of a square array, c is related to a by means of 

c = 1ra2/4. [16] 

Also listed in table 1 are the minimum values of N required to give F/~U the accuracy quoted 
in the table. For most of the calculations, M was chosen in the range 2N-5N but no significant 
changes were noted for M > 2N. The above results for the drag are also depicted in figure 2 
where they are compared to two analytic expressions. The first, 

F 4rr 
/zU = in C -112  - -  0.738 + c - 0.887c 2 + 2.038c 3 + 0(c4) ' [17] 

Table  1 

0~05 15.56 6 20 

0. I0 24.83 I0 50 

0.20 51.53 I0 50 

0.30 102.90 I0 50 

0.40 217.89 15 60 

0.50 532.55 20 60 

0.60 1.763xi03 25 80 

0.70 1.352xi04 40 90 

0.75 1.263xi05 40 90 

c F/~U i'l M 
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Fijure 2. The non-dimemional dry, /~U, u a function of the volume fractioa, c, for the ~lnate array 
( - - ,  computed values; - - -  [17],------, [15]). 

which applies to dilute arrays (c ,~ 1) was recently derived by the present authors (1982a) by 
extending the earlier analysis of Hasimoto (1959). The second expression is valid for concen- 
trated arrays where most of the pressure drop in the fluid takes place as it flows through a 
narrow gap between two adjacent cylinders. Application of the usual "lubrication type" 
approximations gives 

~j~9~2~/ (2){1- (  c ,~,/2]-5,2 
X, Cm.-'-:] J , (c., .x- c <~ 1) [18] 

where crux is the volume fraction of the particles when the cylinders are touching each other 



198 A.s. SANGANI and A. ACRIVOS 

(a = 1) and equals ~-/4 = 0.785 for a square array. As seen in figure 2, the calculated values of 

the drag are in excellent agreement with, respectively, [17] or [18] when c ~ 1 or when c ~ Cmax- 

It is worth noting that the procedure just described differs from Galerkin's method as used 
by Snyder & Stewart (1966) to calculate the velocity profiles for the flow through a simple cubic 

array of spheres because, whereas in the latter the governing differential equations are satisfied 

in some approximate sense, the trial functions chosen here are exact solutions of these 

equations.f As a further point of interest we wish to remark that Golub & Gropp (1979) solved 
Laplace 's  equation in the domain of figure 1 using a method very similar to ours except that 

they chose the origin at the corner of the unit cell diagonally across the center of the cylinder 

(see point D in figure 1) and then determined the unknown coefficients multiplying the trial 

functions via linear programming rather than by least squares. 

The present method can also be used to solve the creeping flow equations in other 

geometries,  e.g. in the hexagonal array to be considered in the next section. Moreover,  as will 

be seen in 4.1.3, the problem of calculating the effective thermal conductivity of a composite 

material consisting of a regular array of cylinders embedded in a matrix can be treated in a 

similar manner. In addition to solving these problems for two-dimensional arrays, the above 

methods can also be extended and applied, in principle, to the corresponding three-dimensional 
cases. 

3. FLOW PAST A HEXAGONAL ARRAY OF CYLINDERS 

In this section we present the calculated values of F7/zU for flow in a hexagonal array, 

which we obtained by solving [1] and [2], in the domain ~ shown in figure 3 with boundary 

conditions: 

ca = $ = 0  on BC [19] 

a__ E = a._._~$ = 0 on OH, CD [20] 
~xz ax, 

aO 
= ~n = 0 on BH [211 

ca = 0, $ = X/3/2 on FG [221 

= X/3/2, ~n ~ = 0 on DF. [23] 

ca and $ as given by [11] and [12] still satisfy the boundary conditions along GH, HB, and BC, 
but now the unknown coefficients a, and b, are chosen so that the boundary conditions along 

DF, in addition to those along FG and CD are satisfied in the "least squares" sense. 
The non-dimensional drag F//zU is still given by [15] and its values for various concen- 

trations c are listed in table 2, where, in the case of a hexagonal array, c is related to a by a 

means of 

C = _---~-~ 7ra". [241 
V5 

fSparrow & Loettter (1959) have treated the case of laminar flow parallel to the axes of cylinders arranged in periodic 
arrays. These authors obtained a solution to the reduced velocity u* (see their equation [3]), which satisfies Laplace's 
equation, by a method very similar to one employed here except that they chose M = N and then satisfied the boundary 
condition at a set of discrete point equal in number to the number of unknowns in their series solution. We are indebted to 
the referee for bringing this work to our attention. 
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Figure 3. A portion of the unit cell for a I~x~loml array of cylinders. The distances AC and AG are, 
respectively, 112 and V312 units of lenllth. 

Table 2 

c F/pU 

0.05 15.74 

0.10 25.16 
0.20 51.15 

0.30 96.79 
0.40 185.77 
0.50 382.2 
0.60 901.61 

O. 70 2.77x10 3 
0.80 1.62x104 
0.85 8.23x104 

Again, the above results for the drag are depicted in figure 4 where they are compared to two 
analytic expressions. The first, 

F 4~r 
~U | 2 4 1nc-112-0.745+c-~c +O(c ) 

[25] 

which applies to dilute arrays (c ~ 1) was recently derived by the present authors (1982a), 
whereas the second expression 

{ [ c ,~.~,~-s,2 
F _27~4~/2  1 -  - -  , #U \c~.J J (Cmo~ - c "~ I) [26] 

applies to concentrated arrays with Cm., equal to ~2~/3 = 0.907. Again there is close cor- 
respondence between the analytical and the numerical results. 

4. HEAT TRANSFER AT LOW PI~CLET NUMBERS 

We now consider the problem of heat transfer to the moving fluid from uniformly heated 
cylinders held fixed in a periodic array under conditions of small Reynolds and P6clet numbers. 
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Figure 4. The non-dimensional drag as a function of the volume fraction for the hexagonal array ( ~ ,  

computed values; - - - ,  asymptotic results, [25] and [26]) 

As mentioned in the introduction, Acrivos et al. (1980) have recently examined the 
corresponding case of heat transfer from heated spheres held fixed in a random array. These 
authors found that when the P6clet number • is suitably small (e2~ c), the particles are, on 
average, hotter than the bulk by an amount given by 

A,,, _ t/a*ZfSa + 1 _ ~/2 1/2 + 0(c3/21n c)] (c . - T L  |-T .Tc +A(a)c 1) [27] 

where q is the volumetric heating rate of spheres, a* is the radius of each sphere, k/ is the 
thermal conductivity of the fluid, and a is the ratio of thermal conductivities k,/k~. The constant 
A as a function of a is given in figure 1 of their paper. Our goal here is to give the 
corresponding results for A T for the case of two periodic arrays of cylinders, the square array 
and the hexagonal arrays. 

4.1 The square array 
4.1.1 The formulation of the problem. Consider again the periodic square array of Section 2. 

Since, in general, the average temperature difference A T between the solids and the bulk will 
depend on the direction of the mean flow, we restrict our discussion to the case where the mean 
flow is in the xm-direction with magnitude U. We shall also assume that each cylinder is 
uniformly heated with volumetric rate q. Non-dimensionalizing the temperature with qa212/ki, 
distances with l, and velocities with U and neglecting the viscous heat dissipation in the steady 
energy balance we obtain 

V2T = 

£ aT 
a UF~x/ within the fluid, [28] 

- l/a2a inside the particles, 
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where • is the P~clet number defined by 

• = alUpcp 
kl [29] 

Due to the heat sources inside the particles, a mean temperature gradient, parallel to the 
direction of the mean flow, will be established in the bed and the magnitude of this gradient, as 
obtained from an overall energy balance, is 

axll 4 e" [30] 

Clearly, for a given value of a, the non-dimensional temperature gradient in the bed is 0(e -~) 
as •--, 0. Following Acrivos et aL (1980) we therefore expand the temperature in power series of 
e, i.e. we let 

T(x;e) = 1T_I + To + eTi + . . . .  [31] 

which when substituted in the energy equation [28] leads to the sequence of problems: 

e-Z: V2T_j = 0 (everywhere). [32] 

•o. 
1 0T_j 

V2To = a ul cTX~ 
- lla2a 

within the fluid. 

inside the particles. [33] 

e':  V2T,= 

lu  aTO 
a Jox~ within the fluid, 

0 inside the particles. [34] 

From the overall energy balance[30] we see that the mean temperature gradient in the 
xt-direction arises only from T-I and that the magnitude of this gradient is Ira/4. We also note 
that T_ lmd/ '1  are anti-symmetric in xl and that To a symmetric function in xl and in (1 - x~) 
(see ~ 1). Further, since V T is periodic, it can be seen that T_~ and T~ must be constant 
along xm = 0 and x~ = 1. Thus if we set the temperature of the origin equal to zero, then we have 
following boundary conditions: 

T-t = 7", =0 ,  °7"0--O Oxt on xt ffi 0 [35] 

1"-,  = I r a l 4 ,  Tl = ~xT ° = 0 on xl = 1, [36] 

plus the insulating conditions 

aT_t aTo = aT", = 0 on x2 -- 0, x2 = 1. [37] 
ax2 0x2 0x2 

In addition, the temperature and the heat flux must be continuous at r = a, i.e. for each term in 
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[31], we require that 
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L=o+ = L=~- [38] 

\-~-r/,=~ _' [391 

Finally, we define the non-dimensional excess temperature of the solid as 

A T = ( T)solid - ( T)unit celt, [40] 

where the bracket ( ) denotes the averaging operator. 

Since T_~ and /'1 are anti-symmetric about xl = 0, they do not contribute to AT, i.e. 

AT = A To + 0(e2). [41] 

Thus in order to determine AT to the leading order, we must solve the corresponding problems 
for T-l and To. We wish to point out here that T-l is the solution of the well known problem of 
heat conduction in a periodic array of cylinders which we shall treat in a later section. First, 
though, we consider the simpler case of equal thermal conductivities. 

4.1.2 The case of equal conductivities (a = 1). In this case, T_~ is a linear function of x~ 
given by 

and [33] for To reduces to 

T_l = -~axl , [421 

[43] 

I T/" 
~ul within the fluid 

V2To= t 

l - l / a  2 inside the particles 

with ul given by the solution obtained in Section 2. The above equation was solved using a 

Fourier-series technique and the computed values of n To as a function of the volume function c 
of the particles are given in figure 5 where they are compared with the analytic expression 

A To= ~(ln c-'12-O.488)+~c-~c2 +-~EO.O76-2(ln c-l/2-0.238) 

+ 4( in  c -1/2 - 2.131) + 0.673c 3 + O(c 4) , [441 

with 

Q = In c -~/z - 0.738 + c - 0.887c 2 + 2.039c 3 + 0(c 4) 

which was recently derived by the present authors (1982b). 
4.1.3 The case of unequal conductivities. We now return to the case of arbitrary a. In this 

case, we must first solve T_t. This problem of determining the solution to Laplace's equation in 
a periodic array of particles is a classic one starting with the work of Rayleigh who, in 1892, 
gave an expression for the effective thermal conductivity of a dilute periodic array. Recent 
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Figure 5. The average temperature difference, &To, as a function of concentration for the square array 
( - - ,  computed values;---, [44); -----, [47]). 

contributions are those of Keller & Sachs (1964) who calculated numerically, using a finite. 
difference scheme, the values of the effective thermal conductivity for a square array 
of perfectly conducting cylinders (a =®) and of Pert'ins et al. (1979) who extended 
Rayleigh's method and obtained the effective conductivities for the square and the 
hexagonal arrays. Unfortunately, since these earlier investigators only reported the effective 
conductivities it became necessary to resolve this problem because the full temperature profiles 
are needed for our purposes. Following the same procedure as in section 2 we therefore 
express the general solution, truncated to a series with only a finite number of terms, which 
satisfies the boundary conditions on Xl = 0, x2 = 0, and on r = a in figure I, as 

T_ I .~ 

Nn~=lan(r2n-I +~+ aa4n-2rl-2n) COS (2n -- l)O , 

N~=I 2a. r 2"-1 l + a  cos(2n-1)O, r<-a, 

r > a ,  

[45] 

and determine the coefficients a, such that the remaining boundary conditions are satisfied 
approximately in the sense of  the lease squares. The expression for the effective thermal 
conductivity then becomes 

k_~__ 4n~ = ( 1-a 4.-2~ 
k ~ ( -  1)"a, I-1--~--;=a ) ,  [46] 

but since the computed values of the effective conductivities were found to be essentially 
identical to those reported in the literature, these w/ll not be presented here. 
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Once the full temperature profiles for T_I are determined, [33] can be solved for any 
arbitrary a. However, we shall only present the results for the specific case of perfectly 
conducting cylinders (a = =). Here, the temperature inside a particle is uniform and accordingly 
the temperature at r = a can be set equal to zero. Again, the method of Section 2 could have 
been used to obtain an expression for To which, in this case, would have involved the product 

of two trigonometric series but, unfortunately, the subsequent evaluation of (To) via the 

numerical integration of To over the unit cell would have been computationally inefficient. 
Therefore, a conventional finite difference method was employed and specifically the usual 
five-point difference formula for Poisson's equation in combination with the Successive Over 

Relaxation (SOR) method. The boundary conditions were also satisfied to 0(h2), - h being the grid 
size. 

The results for the computed values of A To are also given in figure 5 where they are shown 
to be in excellent agreement with the analytical expression 

A To = ~{ ln c_,n _ O.738 + _~a } 0.076 
+ In c -m - 0.738 + 0(c), [47] 

which was recently derived by the present authors (1982b). 

4.2 The hexagonal array 
The equations derived in section 4.1 also apply to the hexagonal array with a few minor 

modifications. Thus in lieu of [30] and [36] we have now the following equations 

OT) 2~r a 

zra 1 
T-t = ~73' T1 = 0 on xl = ~ [49] 

and now the governing differential equations must be solved in the domain shown in figure 3. 
The computed values for ATo as a function of c for two special cases a = 1 and a = = are 
given in figure 6 where, once again, these results are compared with the analytical expressions 

0.073 
A To= ~(ln c-l'2-O.745 + l )  + 1nc_,,2_0.745+0(c), any a [50] 

and 

A To = ~(ln c-tn - O.495) + ~c - ~c2 + Q[ O.O73 - 2 (ln c-11: - 0.225) 

+ ~ ( l n c  - In -1 .62)+  c3+0(c 4) , a = l  [51] 

with 

Q = In c it., _ 0.745 + c - Jc-' + 0(c 4) 

which were recently derived by the present authors (1982b). These expressions for A To for the 
hexagonal array and [44] and [47] for the square array are valid for E-" --~ c ¢ 1. When c < ~2 ~ 1, 
the nature of solution for T is quite different. As discussed by Acrivos et al. (1980), under these 
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Figure 6. The average temperature difference, ATo, as a function of the volume fraction for the be~lloual 

array ( ~ ,  computed values; . . . .  , [50]; . . . .  , [51D. 

conditions each particle effectively behaves as an isolated particle and it can be shown very 
easily that AT in this case is 0(In e). 
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